The military sensor kit would be based on the Alphabet (Google) Project Ara, because the Ara smartphone frames are ideal for versatile utilization thanks to their modular design, and the technology is already available and licensable from the Alphabet, so the development costs could remain reasonable.
The frame in the sensor kit would be based on the standardized Ara mini-frame, but this frame would be significantly different because the sensor kit frame would not have a display. Instead of it, a full-featured smartphone motherboard would be integrated on one side of the frame, with processor, memory, Bluetooth chip, battery, etc., and the other side of the frame would be reserved for the module slots.
That is, in case of the military sensor kit, not the modular design of the smartphone is the essence, but its versatile utilization through the modules. In the absence of the display, the settings of the sensor kit could be really easily configured with a conventional smartphone via Bluetooth connection.
Since the sensor kit would be primarily designed for military use, therefore, the frame and all of the modules would be waterproof and shockproof.
There would also be a significant difference between the Ara smartphones and the sensor kit, so that the sensor kit frame would never be used as a conventional handheld smartphone, so sizing of the insertable modules can be much freer, the modules may have different thicknesses and may even protrude over the frame.
In addition, it would be possible to connect various larger devices to the frame via extension cables, which makes endless possibilities of the sensor kit. An extension cable would be one meter long, at one end can be inserted to one of the slots on the frame, and at the other end a separate device or another extension cable can be connected. Thus, the sensor kit frame and the larger devices could be easily placed and camouflaged separately. As another option, a module can also be inserted into an extension cable instead of the frame, so farther away from the frame a small size sensor can easily be hidden.
The extension cables would not just be for the data transmission, but would also serve as energy distributors between the external devices and the available power sources.
Examples of the modules, which can be inserted in the frame slots:
- Slot splitter module, which can be inserted in a frame slot or an extension cable slot, creating two free slots.
- GPU module, which can increase the performance of the sensor kit for simultaneous use of multiple cameras.
- Camera modules with different sensitivity, for example to take pictures or videos.
- Speaker module, for example to play alarm tones.
- Microphone module, for example to record ambient sounds.
- RAM module, which may be necessary if large amounts of data need to be processed from the sensors.
- SSD drive module, which increases the data storage capacity.
- Different types of USB and other kinds of standardized connectors.
- Modem module with a traditional landline connector, for example to connect with lower bandwidth.
- Battery modules with different capacities, which can increase the availability time.
- GPS module for positioning.
- Wi-Fi module for higher bandwidth connection.
- SIM card module for use of the cellular networks.
- Module with different kinds of SD card readers.
- Seismic sensor module, for example to detect earthquakes.
- HDMI output, for example constantly monitoring the installed sensors.
- Module with different kinds of smartphone charger connectors.
Examples of larger separate devices, which can only be connected via extension cables to the sensor kit frame:
- Separate smartphone display, which may be useful if tests running are needed directly on the sensor kit or the connected devices, or for example, if watching directly the video feed is essential during an observation.
- External hard drive or SSD, which significantly increases the data storage capacity.
- Fixed or remote-controlled shotgun microphone, for example to the observations.
- Different sensitivity and view angle fixed or remote-controlled cameras, which could be conventional, active or passive infrared, etc.
- External power supply devices, for example solar panel, ethanol fuel cell, transformer to the local energy grid, UPS, smartphone power bank, etc.
- Motion detectors, for example with laser or infrared beams.
- Remote-controlled laser rangefinder, for example to the target distance determination.
- Remote-controlled laser designator, for example to guide bombs or missiles.
- Air pollution detectors with different sensitivity for detecting carbon dioxide, carbon monoxide, ozone, various chemicals, etc.
- Very accurate GPS positioning device.
- External Wi-Fi device for long-range wireless connection.
- Ground seismic sensors, for example to detect the vehicles and humans movements.
- Radios with different transmitter power output, for example to remote controlling and the continuous data transmission.
Operation of the military sensor kit:
The military sensor kit frame could be used on its own, or even by coordinating the operation of several separate frames, which could be equipped with different sensors.
The control could be direct (e.g. via USB cable) or remote (e.g. via Wi-Fi). All military sensor kits in the control range can be controlled with the same smartphone app, only the unique identification codes of the sensor kits must be given for this.
Thus, for example, a single sensor kit would be ideal for observation, but with more than one sensor kit, it is possible to build an alarm system for the protection of a gather point or even a building.
And the possibilities of the uses are limitless.
(The first version of this concept was written in August 2018.)